Course Type	Course Code	Nameof Course		Т	Р	Credit
DE	NFMD509	Microwave Processing of Minerals and Fuels		0	0	3

Prerequisites: Knowledge of vector, differential, and integral calculus, basics of electrical and electronics engineering, organic chemistry, fundamentals of physics.

CourseObjective

The course will introduce the students to the

• Course is a starting point for post-graduates and researchers to learn microwave chemistry, applications in mineral processing,

• microwave-driven heterogeneous catalytic chemistry, and other unique features of microwaves. LearningOutcomes

Upon successful completion of this course, students will develop:

- Acomprehensive understanding of the fundamentals of microwave heating.
- Ability to apply microwave heating in mineral and solid waste processing, gas, and liquid chemistry

Unit No.	TopicstobeCovered	Hours	LearningOutcome
1	Introduction : Process intensification- A general concept, Electromagnetic radiation, Microwaves, and applications	4	Overview of the process intensification concept, microwaves, generation mechanism, and applications in food and Other industries
2	Fundamentals of microwave heating: Mechanisms, microwave specific effects in single phase and multiphase systems, Transport phenomena and thermal property under microwave irradiation, Managing microwave-induced effects such as hotspots and plasma.	9	Familiarity with different heating mechanisms in microwave heating, hotspot generation, stabilization of hotspot formation in the multiphase system, introductory thermal balances, and transport phenomena
3	Applications in mineral processing: Heating of ores and minerals, Applications in sorting, drying, and grinding of minerals, Microwave-induced physio-chemical changes, Microwave-assisted reduction	9	Understanding the role of microwave heating in mineral processing from sorting to grinding, changes in the physical and chemical properties of minerals by microwaves, and microwave- assisted reduction of different minerals
4	Applications in gas and liquid phase chemistry: Bulk and nano-structured metals in a microwave field, Microwave- assisted gas, and liquid phase chemistry. Hybrid mode of heating for high-process efficiency	8	Knowledge hotspot effect in heterogeneous materials, microwave applications in batch and continuous flow chemistry. Understanding the importance of the combination of different modes of Heating for efficient processing

5	Applications in solid waste processing: Coal conversion through microwave heating, Microwave-assisted algal and lignocellulosic biomass conversion, Microwave-assisted polymer synthesis and conversion. Microwave-assisted gasification	8	Knowledge of existing literature on the coal, biomass, plastics, and other waste processing using microwave heating, the role of microwave heating in enhanced reaction rates and energy efficiency	
6	Emerging trends and challenges, Special topics in microwave heating applications.	4	Understanding the emerging research in microwave heating applications.	
	Total	42		

Text Book:

1. W. Cao, The Development and Application of Microwave Heating, Intech open-2012

ReferenceBooks:

- 2. S.Horikoshi, R.F.Schiffmann, J.Fukushima, N.Serpone. *Microwave Chemical and Material Processing-A Tutorial*, Springer Nature Singapore Pte Ltd. 2018
- 3. S.Horikoshi, N.Serpone. *MicrowavesinCatalysis*—MethodologyandApplications. Wiley-VCH, 2016.
- 4. Z.Fang, R.L.SmithJr, Z.Qi, Production of Biofuels and Chemicals with Microwave. Springer, 2015.
- 5. R. Hoogenboom, U.S. Schubert, F. Wiesbrock, *Microwave-assisted Polymer Synthesis*, Springer, 2016.